Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38493478

RESUMEN

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/metabolismo , Cromatina , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Resistencia a Múltiples Medicamentos , Neoplasias de la Mama/genética
2.
Ocul Surf ; 30: 168-178, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37742739

RESUMEN

PURPOSE: Lumican is a major extracellular matrix (ECM) component in the cornea that is upregulated after injury and promotes corneal wound healing. We have recently shown that peptides designed based on the 13 C-terminal amino acids of lumican (LumC13 and LumC13C-A) are able to recapitulate the effects of lumican on promoting corneal wound healing. Herein we used computational chemistry to develop peptide mimetics derived from LumC13C-A with increased stability and half-life that are biologically active and non-toxic, thereby promoting corneal wound healing with increased pharmacological potential. METHODS: Different peptides staples were rationalized using LumC13C-A sequence by computational chemistry, docked to TGFßRI and the interface binding energies compared. Lowest scoring peptides were synthesized, and the toxicity of peptides tested using CCK8-based cell viability assay. The efficacy of the stapled peptides at promoting corneal wound healing was tested using a proliferation assay, an in vitro scratch assay using human corneal epithelial cells and an in vivo murine corneal debridement wound healing model. RESULTS: Binding free energies were calculated using MMGBSA algorithm, and peptides LumC13C and LumC13S5 displayed superior binding to ALK5 compared to the non-stapled peptide LumC13C-A. The presence of the hydrocarbon staple in LumC13C enhances the stability of the α-helical conformation, thereby facilitating more optimal interactions with the ALK5 receptor. The stapled peptides do not present cytotoxic effects on human corneal epithelial cells at a 300 nM concentration. Similar to lumican and LumC13C-A, both C13C and LumC13S5 significantly promote corneal wound healing both in vitro and in vivo. CONCLUSIONS: Highly stable and non-toxic stapled peptides designed based on LumC13, significantly promote corneal wound healing. As a proof of principle, our data shows that more stable and pharmacologically relevant peptides can be designed based on endogenous peptide sequences for treating various corneal pathologies.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Humanos , Animales , Ratones , Lumican/metabolismo , Lumican/farmacología , Córnea/patología , Lesiones de la Cornea/metabolismo , Cicatrización de Heridas , Péptidos/farmacología , Péptidos/metabolismo , Epitelio Corneal/metabolismo
3.
Redox Biol ; 43: 101975, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932870

RESUMEN

Glutaredoxin, Grx, is a small protein containing an active site cysteine pair and was discovered in 1976 by Arne Holmgren. The Grx system, comprised of Grx, glutathione, glutathione reductase, and NADPH, was first described as an electron donor for Ribonucleotide Reductase but, from the first discovery in E.coli, the Grx family has impressively grown, particularly in the last two decades. Several isoforms have been described in different organisms (from bacteria to humans) and with different functions. The unique characteristic of Grxs is their ability to catalyse glutathione-dependent redox regulation via glutathionylation, the conjugation of glutathione to a substrate, and its reverse reaction, deglutathionylation. Grxs have also recently been enrolled in iron sulphur cluster formation. These functions have been implied in various physiological and pathological conditions, from immune defense to neurodegeneration and cancer development thus making Grx a possible drug target. This review aims to give an overview on Grxs, starting by a phylogenetic analysis of vertebrate Grxs, followed by an analysis of the mechanisms of action, the specific characteristics of the different human isoforms and a discussion on aspects related to human physiology and diseases.


Asunto(s)
Glutarredoxinas , Glutatión , Catálisis , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Filogenia
4.
Nitric Oxide ; 93: 78-89, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539562

RESUMEN

Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , VIH-1/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Replicación Viral/fisiología , Infecciones por VIH , Humanos , Donantes de Óxido Nítrico/farmacología , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Familia-src Quinasas/metabolismo
5.
Nitric Oxide ; 89: 1-13, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009708

RESUMEN

Cancer development is closely related to chronic inflammation, which is associated with identifiable markers of tumor progression, such as uncontrolled cell proliferation, angiogenesis, genomic instability, chemotherapeutic resistance, and metastases. Redox processes mediated by reactive oxygen species (ROS) and nitric oxide (NO) within the inflammatory tumor microenvironment play an essential role in directly influencing intercellular and intracellular signaling. These reactive species originating in the cancer cell or its microenvironment, mediate the epithelial-mesenchymal transition (EMT) and the mesenchymal-epithelial transition (MET). However, intracellular interactions between NO and ROS must be controlled to prevent cell death. Melanoma, breast, and colon cancer cells have developed a mechanism to survive and adapt to oxidative and nitrosative stress. The mechanism involves a spatial-temporal fine adjustment of the intracellular concentrations of NO and ROS, thereby guaranteeing the successful development of cancer cells. Physiological concentrations of NO and supra physiological concentrations of ROS are prevalent in cancer cells at the primary site. The situation reverses in cancer cells undergoing the EMT prior to being released into the blood stream. Intracellular supra physiological concentrations of NO found in circulating cancer cells endow them with anoikis resistance. When the anoikis-resistant cancer cells arrive at a metastatic site they undergo the MET. Endogenous supra physiological concentrations of ROS and physiological NO concentrations are prevalent in these cells. Understanding tumor progression from the perspective of redox signaling permits the characterization of new markers and approaches to therapy. The synthesis and use of compounds with the capacity of modifying intracellular concentrations of NO and ROS may prove effective in disrupting a redox homeostasis operative in cancer cells.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Neoplasias del Colon/fisiopatología , Melanoma/fisiopatología , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Transición Epitelial-Mesenquimal/fisiología , Humanos , Melanoma/tratamiento farmacológico , Donantes de Óxido Nítrico/uso terapéutico , Microambiente Tumoral/fisiología
6.
Free Radic Biol Med ; 134: 350-358, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30703479

RESUMEN

The combination of ascorbate and menadione (VC:VK3 = 100:1) is an investigational treatment for cancer under clinical trials. Dehydroascorbic acid (DHA), the oxidized form of ascorbate, can be taken up by cells via glucose transporters, over-expressed in many cancer cells. It has been known that the combination of VC/VK3 kills cancer cells by inducing hydrogen peroxide (H2O2) via a redox cycling reaction. However, the mechanism has not been fully understood yet. Intracellularly, DHA is reduced to ascorbate by NADPH via GSH and glutaredoxin as well as by thioredoxin (Trx) and the selenoenzyme thioredoxin reductase (TrxR). These two systems are also critical as electron donors for ribonucleotide reductase (RNR), which produces deoxyribonucleotides de novo for DNA replication and DNA repair and is highly expressed in tumor cells. We found that RNR was highly sensitive to VC/VK3 in vitro with similar effects as observed with H2O2. In cancer cells, VC/VK3 inhibited RNR mainly by targeting its R2 subunit. More importantly, both the Trx and GSH systems were oxidized by the combination, which resulted in the loss of GSH, increased protein glutathionylation, and highly oxidized Trx1. The mechanism of cell death induced by VC/VK3 was also elucidated. We found that VC/VK3 inhibited glutathione peroxidase activity and led to an elevated level of lipid peroxidation, which triggered apoptosis-inducing factor (AIF) mediated cell death pathway. Therefore, the combination not only induced replicative stress by inhibiting RNR, but also oxidative stress by targeting anti-oxidant systems and triggered AIF-mediated cancer cell death.


Asunto(s)
Ácido Ascórbico/farmacología , Replicación del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vitamina K 3/farmacología , Muerte Celular , Combinación de Medicamentos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Células Tumorales Cultivadas , Vitaminas/farmacología
7.
Anal Biochem ; 568: 24-30, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597126

RESUMEN

Glutathione is an abundant low-molecular-weight thiol, up to 10 mM in mammalian cells, and exists in three major forms: reduced sulphydryl (GSH), glutathione disulfide (GSSG) or bound to Cys residues in proteins (PSSG). The ratio GSH/GSSG has been used as an indicator of the cells redox level but this parameter can also be estimated by the quantification of PSSG. In fact, PSSGs have the advantage of being more stable than GSSG. Here we present a highly sensitive fluorescent-based method for detection of low concentrations of glutathione in complex samples such as cell lysates, tissues and plasma. The method is based on our previously described protocol to study Glutaredoxin (Grx) activity. The whole procedure was optimized to measure the fluorescence increase of the di-eosin-glutathione disulfide (Di-E-GSSG) reduced by Grx in the presence of Glutathione Reductase and NADPH, keeping GSH as the limiting factor to drive the reaction. The methods to selectively measure PSSG are expensive and not widely accessible, therefore we optimized our glutaredoxin protocol to quantify this post-translational modification using common laboratory equipments. Overall, our method has simplicity and rapidity combined with high sensitivity as its main advantages; therefore, it may be particularly suitable for large-scale clinical studies.


Asunto(s)
Fluorescencia , Glutarredoxinas/metabolismo , Glutatión/análisis , Células Cultivadas , Glutarredoxinas/química , Glutatión/metabolismo , Humanos
8.
J Cell Physiol ; 233(4): 3176-3194, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28833096

RESUMEN

We investigated the role of glycosaminoglycans (GAGs) in the regulation of endothelial nitric oxide synthase (eNOS) activity in wild-type CHO-K1 cells and in xylosyltransferase-deficient CHO-745 cells. GAGs inhibit the integrin/FAK/PI3K/AKT signaling pathway in CHO-K1 cells, decreasing the phosphorylation of eNOS at Ser1177. Furthermore, in CHO-K1 cells, eNOS and PKCα are localized at sphingolipid- and cholesterol-rich domains in the plasma membrane called caveolae. At caveolae, PKCα activation stimulates the phosphorylation of eNOS on Thr495, resulting in further inhibition of NO production in these cells. In our data, CHO-745 cells generate approximately 12-fold more NO than CHO-K1 cells. Increased NO production in CHO-745 cells promotes higher rates of protein S-nitrosylation and protein tyrosine nitration. Regarding reactive oxygen species (ROS) production, CHO-745 cells show lower basal levels of superoxide (O2- ) than CHO-K1 cells. In addition, CHO-745 cells express higher levels of GPx, Trx1, and catalase than CHO-K1 cells, suggesting that CHO-745 cells are in a constitutive nitrosative/oxidative stress condition. Accordingly, we showed that CHO-745 cells are more sensitive to oxidant-induced cell death than CHO-K1 cells. The high concentration of NO and reactive oxygen species generated by CHO-745 cells can induce simultaneous mitochondrial biogenesis and antioxidant gene expression. These observations led us to propose that GAGs are part of a regulatory mechanism that participates in eNOS activation and consequently regulates nitrosative/oxidative stress in CHO cells.


Asunto(s)
Proteoglicanos de Heparán Sulfato/deficiencia , Espacio Intracelular/metabolismo , Óxido Nítrico/biosíntesis , Regulación hacia Arriba , Animales , Células CHO , Cricetinae , Cricetulus , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oligopéptidos/metabolismo , Biogénesis de Organelos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo
9.
Biomed J ; 40(4): 189-199, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28918907

RESUMEN

Accumulating mutations may drive cells into the acquisition of abnormal phenotypes that are characteristic of cancer cells. Cancer cells feature profound alterations in proliferation programs that result in a new population of cells that overrides normal tissue construction and maintenance programs. To achieve this goal, cancer cells are endowed with up regulated survival signaling pathways. They also must counteract the cytotoxic effects of high levels of nitric oxide (NO) and of reactive oxygen species (ROS), which are by products of cancer cell growth. Accumulating experimental evidence associates cancer cell survival with their capacity to up-regulate antioxidant systems. Elevated expression of the antioxidant protein thioredoxin-1 (Trx1) has been correlated with cancer development. Trx1 has been characterized as a multifunctional protein, playing different roles in different cell compartments. Trx1 migrates to the nucleus in cells exposed to nitrosative/oxidative stress conditions. Trx1 nuclear migration has been related to the activation of transcription factors associated with cell survival and cell proliferation. There is a direct association between the p21Ras-ERK1/2 MAP Kinases survival signaling pathway and Trx1 nuclear migration under nitrosative stress. The expression of the cytoplasmic protein, the thioredoxin-interacting protein (Txnip), determines the change in Trx1 cellular compartmentalization. The anti-apoptotic actions of Trx1 and its denitrosylase activity occur in the cytoplasm and serve as important regulators of cell survival. Within this context, this review focuses on the participation of Trx1 in cells under nitrosative/oxidative stress in survival signaling pathways associated with cancer development.


Asunto(s)
Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Tiorredoxinas/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/fisiología
11.
Antioxid Redox Signal ; 18(3): 221-38, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22894707

RESUMEN

AIMS: S-nitrosylation of Cys118 is a redox-based mechanism for Ras activation mediated by nitric oxide (NO) at the plasma membrane. RESULTS: Ras signaling pathway stimulation by 50 and/or 100 µM of S-nitrosoglutathione (GSNO) causes proliferation of HeLa cells. Proliferation was not observed in HeLa cells overexpressing non-nitrosatable H-Ras(C118S). HeLa cells overexpressing H-Ras(wt) containing the spatiotemporal probe green fluorescent protein (GFP) fused to the Ras-binding domain of Raf-1 (GFP-RBD) incubated with 100 µM GSNO stimulated a rapid and transient redistribution of GFP-RBD to the plasma membrane, followed by a delayed and sustained recruitment to the Golgi. No activation of H-Ras at the plasma membrane occurred in cells overexpressing H-Ras(C118S), contrasting with a robust and sustained activation of the GTPase at the Golgi. Inhibition of Src kinase prevented cell proliferation and activation of H-Ras by GSNO at the Golgi. Human umbilical vein endothelial cells (HUVECs) stimulated with bradykinin to generate NO were used to differentiate cell proliferation and Ras activation at the plasma membrane versus Golgi. In this model, Src kinase was not involved in cell proliferation, whereas Ras activation proceeded only at the plasma membrane, indicating that HUVEC proliferation induced by NO resulted only from stimulation of Ras. INNOVATION: The present work is the first to demonstrate that NO-mediated activation of Ras in different subcellular compartments regulates different downstream signaling pathways. CONCLUSION: S-nitrosylation of H-Ras at Cys(118) and the activation of Src kinase are spatiotemporally linked events of the S-nitrosothiol-mediated signaling pathway that occurs at the plasma membrane and at the Golgi. The nonparticipation of Src kinase and the localized production of NO by endothelial NO synthase at the plasma membrane limited NO-mediated Ras activation to the plasma membrane.


Asunto(s)
Proliferación Celular , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , S-Nitrosoglutatión/farmacología , Animales , Bradiquinina/farmacología , Células COS , Señalización del Calcio , Membrana Celular/enzimología , Chlorocebus aethiops , Cisteína/análogos & derivados , Cisteína/metabolismo , Activación Enzimática , Aparato de Golgi/enzimología , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/fisiología , Oxidación-Reducción , Fosfolipasa C gamma/antagonistas & inhibidores , Fosfolipasa C gamma/metabolismo , Procesamiento Proteico-Postraduccional , S-Nitrosotioles/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
12.
Biochim Biophys Acta ; 1814(12): 1862-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21854878

RESUMEN

Proteoglycans encompass a heterogeneous group of glycoconjugates where proteins are substituted with linear, highly negatively charged glycosaminoglycan chains. Sulphated glycosaminoglycans are ubiquitous to the animal kingdom of the Eukarya domain. Information on the distribution and characterisation of proteoglycans in invertebrate tissues is limited and restricted to a few species. By the use of multidimensional protein identification technology and immunohistochemistry, this study shows for the first time the presence and tissue localisation of different proteoglycans, such as perlecan, aggrecan, and heparan sulphate proteoglycan, amongst others, in organs of the gastropoda Achatina fulica. Through a proteomic analysis of Golgi proteins and immunohistochemistry of tissue sections, we detected the machinery involved in glycosaminoglycan biosynthesis, related to polymer formation (polymerases), as well as secondary modifications (sulphation and uronic acid epimerization). Therefore, this work not only identifies both the proteoglycan core proteins and glycosaminoglycan biosynthetic enzymes in invertebrates but also provides a novel method for the study of glycosaminoglycan and proteoglycan evolution.


Asunto(s)
Enzimas/análisis , Proteoglicanos/biosíntesis , Proteoglicanos/química , Proteómica/métodos , Caracoles/metabolismo , Animales , Enzimas/química , Enzimas/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Modelos Animales , Proteoglicanos/análisis , Proteoma/análisis , Caracoles/química , Caracoles/genética , Caracoles/ultraestructura , Distribución Tisular , Vertebrados/metabolismo
13.
Toxicol Appl Pharmacol ; 233(2): 227-37, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18786557

RESUMEN

Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.


Asunto(s)
S-Nitrosoglutatión/farmacología , S-Nitrosotioles/metabolismo , Tiorredoxinas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nitritos/metabolismo , Fosforilación/efectos de los fármacos , S-Nitrosoglutatión/administración & dosificación , Transducción de Señal/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
14.
Biochem Biophys Res Commun ; 369(4): 1001-6, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18325324

RESUMEN

p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.


Asunto(s)
Apoptosis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Flavonoides/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Donantes de Óxido Nítrico/farmacología , S-Nitrosoglutatión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...